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SUMMARY 

A formulation of a mixed finite element method for the analysis of unsteady, convective, incompressi- 
ble viscous flow is presented in which: (i) the deviatoric-stress, pressure, and velocity are discretized in 
each element, (ii) the deviatoric stress and pressure are subject to the constraint of the homogeneous 
momentum balance condition in each element, a priori, (iii) the convective acceleration is treated by the 
conventional Galerkin approach, (iv) the finite element system of equations involves only the constant 
term of the pressure field (which can otherwise be an arbitrary polynomial) in each element, in addition 
to the nodal velocities, and (v) all integrations are performed by the necessary order quadrature rules. 
A fundamental analysis of the stability of the numerical scheme is presented. The method is easily 
applicable to 3-dimensional problems. However, solutions to several problems of 2-dimensional 
Navier-Stokes’ flow, and their comparisons with available solutions in terms of accuracy and efficiency, 
are discussed in detail in Part I1 of this paper. 
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INTRODUCTION 

Development of efficient and accurate finite element methods ( E M )  for solving the 
Navier-Stokes equations governing unsteady, convective, incompressible, viscous fluid flow, 
has been the subject of intense scrutiny by several researchers over the past 8 years or so. 
The FEM developed so far can be labeled as ‘semi-discrete’ in nature-a finite element 
discretization in space and a temporal finite-difference approximation to treat the unsteady 
aspect of the flow. 

The main issues germane to the development of successful semi-discrete approximations for 
Navier-Stokes unsteady flows can be broadly identified as: (i) treatment of the kinematic 
constraint of incompressibility, (ii) proper treatment of the operator, which represents the 
convective acceleration of the fluid particle, and whose Frechet derivative is unsymmetric, 
(iii) proper algorithms to solve the (unsymmetric) non-linear algebraic equations which arise 
for convection dominated flows under steady-state conditions, and (iv) proper algorithms for 
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integrating the first-order (non-linear) ordinary differential equations which arise for un- 
steady, convection dominated flows. The literature contains many works which present 
diverse viewpoints in addressing each of these issues. Without embarking on an exhaustive 
survey of this still burgeoning literature, we shall mention, in the following, only a few 
representative works, which provide alternative treatments of each of the above four issues, 
which contain additional references to other important pertinent literature, and which are 
pertinent to the present work for the purpose of contrast and comparison. 

In the treatment of incompressibility, the existing literature provides the following altera- 
tives: (a) the so-called 'primitive-variable' or the assumed 'velocity-pressure' mixed formula- 
tion. This method has been extensively studied by Gresho, Sani, Lee, Upson, Chan, and 
Leone,'-' Olson and T u a t q 6  Gartling, Nickell and Tanner,7 and Donea et a[.* In this 
method, the hydrostatic pressure acts as a Lagrange multiplier to enforce the incompressibil- 
ity constraint and is retained as an unknown vector in the global finite element system of 
equations. In this approach, in general, the basis functions for the assumed element velocities 
are one degree higher than those for the assumed element pressure.435 In this method, 
in general, the velocity solutions obtained are much better than those for pressure, even 
though certain 'cures' and 'smoothing techniques' for generating 'good' pressure solutions 
have been suggested.273 (b) The 'selective-reduced-integration-penalty methods' (SRIP). 
In this approach, the constitutive equation is modified through the introduction of a 
penalty parameter, and the hydrostatic pressure is eliminated ab initio from the 
formulation, but is computed by post-processing the obtained velocity solution. This 
elimination of pressure, which results in a smaller system of equations than in approach (a) 
above has been proclaimed by many to be one of its major advantages. This method has 
been extensively studied by Hughes, Brooks, Taylor, Tezduyar, Liu and Levy,+'' Heinrich 
and Marshall,'2 Bercovier and Engelman,13 Nakazawa and Zienkiewic~'~~' '  and Redd~," . '~  
among others. Recent theoretical investigations of these methods by Oden, Kikuchi, Song, 
and Jacquotte's-21-through studies of the so-called LBB conditions governing the SRIP 
methods-indicate that some of the SRIP methods are, in fact, unstable. Attempts have been 
made at 'averaging' or 'filtering' the pressures to stabilize these methods (see Reference 20 
and the References therein) but the methods are, in general, still sensitive to singularities and 
distortions of the mesh. These drawbacks notwithstanding, there are some RIP methods 
which work highly satisfactorily for certain problems. It should be mentioned that Malkus 
and Hughes22 have discussed the 'equivalence' between the above two methods, namely, the 
primitive variable mixed and SRIP methods, under certain circumstances. It was noted22 that 
to each mixed element of the primitive variable type, with continuous velocities and 
discontinuous pressure fields, there corresponds an element and a reduced integration 
scheme in the penalty function formulation. 

In the treatment of the operator of the convective acceleration term, the following 
approaches have been suggested in the literature: (a) the use of the standard Galerkin 
method, wherein the trial (or assumed basis functions for velocities) functions are the same 
as the test (or the weight functions in the weighted residual formulations) functions. This has 
been used by Gresho, Leone, Lee and Sani, Upson and c h a ~ ~ , ' - ~  Donea et a1.' and Reddy.16 
This technique may result in oscillations when the streamwise gradients become too large to 
be resolved by the mesh and, often, an appropriate solution to the wiggle problem is the use 
of selective grid refir~ement.~ (b) The use of the so-called Petrov-Galerkin method, wherein 
the trial and test functions are different. This method has been studied by Heinrich and 
Z i e n k i e ~ i c z , ~ ~  and Hughes et al.'." who first introduced the so-called quadrature upwinding 
scheme which was found to exhibit cross-wind diffusion; Later, to remedy this, they 
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introduced the so-called stream-line upwinding. However, it appears4 that the upwind 
schemes, in general, effectively reduce the local Reynolds number and thereby generate 
deceptively smooth and often inaccurate results for the actual Reynolds number on hand. 
The ‘upwind’ finite element scheme has been earlier suggestedz4 as a means of coping with 
second-order differential equations with significant first derivatives. 

As for the issue of solving the unsymmetric non-linear equations for steady flow, the 
following techniques exist: (a) direct iteration, (b) Newton-Raphson or (c) the so called 
quasi-Newton or variable metric methods. The literature on this is quite exhaustive. We 
restrict ourselves to the techniques used in the present paper; those belonging to category (c) 
above. The details of these techniques can be found in the works of Dennis and More,25 
Engelman, Strang and Bathe,26 and Geradin, Idelsohn and H ~ g g e . ’ ~  Finally, the literature on 
time-integration of the first-order, ordinary non-linear differential equations for unsteady 
flow is also exhaustive. Here we cite the representative works which are explicit, ‘linearly 
explicit’, or fractional step  method^,'^^^' respectively, with further differences arising due to 
either consistent or lumped masses being employed. 

With the above perspective, we now introduce the presently proposed method. Here, in 
summary: (i) the incompressibility constraint is treated through a mixed formulation based 
on assumed ‘deviatoric stress-velocity-hydrostatic pressure’ in each element. The present 
mixed method is thus radically different from the ‘primitive variable’ mixed method discus- 
sed earlier; (ii) the convective acceleration term is treated through a conventional Galerkin 
method. It should be remembered, however, that in the present formulation the momentum 
balance condition involves stresses directly along with the convective acceleration (in terms 
of spatial velocities and their gradients). The first derivatives of both the stress and velocity 
fields occur in the momentum equation, and both the stress and velocity are directly 
approximated in each element in the present method; (iii) the steady-state non-linear 
algebraic equations are solved by a quasi-Newton method with Broyden update, and (iv) the 
unsteady equations are solved by a ‘linearly implicit’ algorithm. The main object of our 
present paper is to discuss only items (i) and (ii) above-the distinguishing features of the 
present mixed method-whereas items (iii) and (iv) and variations thereof can be subjected 
of an independent study, irrespective of the spatial discretization scheme used. 

Thus, in the present method, all the three fields-the deviatoric stress, the hydrostatic 
stress, and the velocity-are discretized in each element. In the present approach, the 
deviatoric fluid stresses and the hydrostatic pressure are assumed in each element so as to 
satisfy the homogeneous part of the linear momentum balance condition (the angular 
momentum balance condition being met by the symmetry of the chosen stress tensor). In 
addition, we assume a C” continuous velocity field over each element. Even though the 
hydrostatic pressure is an arbitrary polynomial in each element, only the constant term of this 
polynomial becomes a solution variable, in addition to the nodal velocities, in the global 
finite element system of equations. Thus, for a given finite element mesh, the present method 
results in a global system of equations which is larger than that in the SRIP methodsp-” by 
only the number of elements used in the discretization. This additional computing becomes 
‘trivial’ in the case of three-dimensional flow modelling. Moreover, we find that even this 
small additional computing is more than offset by the excellent accuracy, and direct solution, 
of both the velocity and pressure fields. Also, the present mixed method is found to be not 
only more accurate but also efficient as compared to the primitive variable mixed r n e t h ~ d . ~ . ~ ’  
Also in the present method, no selective reduced integation is employed: all integrations are 
performed with the necessary order quadrature rules. 

The present mixed method for unsteady convection dominated Navier-Stokes flows 
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reduces to a hybrid method for treating creeping ‘Stokes’ flows presented earlier by 
Bratianu, Ying, Yang, and A t l ~ r i . ~ ~ - ~ ’  For the Stokes flow, not only a demonstration of the 
versatility of the present approach,28 but also a study of stability and convergence of the 
method29 were presented. 

In Part I of the current paper we present, in order: (i) the formulation of the semi-discrete 
approximation scheme using a mixed finite element scheme based on the assumed ‘deviatoric 
stress-pressure-velocity’ fields in each element, (ii) a study of the stability of the present 
mixed scheme, and (iii) some details of solutions of the non-linear algebraic and first-order 
differential equations. Specific details of formulation of certain 2-dimensional elements are 
given in Appendix I. A detailed comparison of the present mixed method with the standard 
‘velocity-pressure’ mixed method is made in Appendix 11. A detailed account of the 
computed solutions for various problems, and their comparison with those generated by the 
cited alternative methods, are given in Part I1 of this paper. 

MIXED FINITE ELEMENT METHOD BASED ON ASSUMED (c+li, p, u) FOR 
INCOMPRESSIBLE VISCOUS FXOW 

Here we consider unsteady flow, at moderate to high Reynolds number, of an incompressible 
viscous fluid in a domain V with spatial co-ordinates xi. We use the notation: p the fluid 
density; the body forces (excluding inertia) per unit mass; aii the fluid stresses; aij the 
deviatoric stress; p the hydrostatic pressure; oi the velocity of a fluid particle; Vii the velocity 
strains, Ti the prescribed tractions on a boundary segment S,; .iji the prescribed velocities at 
S,; and ( ) , j  denotes the partial differentiation w.r.t. 3. The well-known (Wavier-Stokes’) 
field equations are: 

(Incompressibility): ui,i = 0 in V (1) 

(Momentum balance): ~ r , , ~  + p E  = p-+ pqjvj ( 2 4  

(2b) 
(Compatibility): (3) 
(Constitutive law)”: vij = dA/avj (4) 

avi 
at 

(T.. = a,. 
l J  J I  

Vii = y.i = q. E , j )  . .I.f(u. 1.1 . + ui,i 1 

where 
A(Vlm, p > : =  - p v k k + ~ v h v h  

p is the coefficient of viscosity, and thus 

ati = -p isii + 2pvii  
- 

(Traction b.c): aiini = at S, 
(Velocity b.c.): ui = f i i  at S, 

where nj are components of a unit outward normal to 

Thus, 

It is well-known that for all compatible velocity fields 

q.. = -p 6.. +a!. 
IJ IJ 

= 2pvij 

S. We further note that: 

(9) 

(10) 
ui, which satisfy equation (8) a priori, 

* Here A is the stress-working density per unit volume. 
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but not equation (1) a priori, the variational statement, 

where 
6P+SN=O 

P ( p ,  ui)= [ A ( p ,  vi)-pJ?pi]dV-k, z v i  ds 5, 
and 

6N = 1" p k +  6vi d V  

for all arbitrary variations 6p, and admissible variations 6vi[i.e. 6Vj = 6 ~ ( , , ~ ,  in V and 6vi = 0 
at S,],  leads to the Euler-Lagrange equations which are the above equations (1), (2) and (7),  
respectively. In an approximate solution* based on equation ( l l ) ,  if the same basis functions 
are chosen for ui as well as for 6vi, the method is referred to as a standard Galerkin weighted 
residual method. On the other hand, if the basis functions chosen for 6vi are different from 
those for vi, the method is in general referred to as the Petrov-Galerkin weighted residual 
method. 

Suppose now that the constraints, equations (3) and (8) are relaxed through Lagrange 
multipliers crij and Ti respectively. Thus a general variational statement which leads as its 
Euler-Lagrange equations, to equations (1)-(3), (7) and (8), respectively, is given by:* 

and 6N is as in equation (13). In equation (15) it is understood that uii = - p  6, +uii. 

density of the fluid in terms of stresses. Thus, let 
We now consider the Legendre contact transformation to express the stress working 

Such that, 

Using equations (3, (9), and (10) in (16), we find: 

Thus, for an incompressible fluid, the complementary stress-working density B depends on 
the stress-deviator alone. 

Now, we eliminate v k m  as a variable from equation (15) by using equation (16), and thus 

* In a finite elcment solution, since A is quadratic in u<, ,~ ) ,  it is seen that u, should be C" continuous in each element 
as well as at the element boundaries. 

This procedure is formally analogous to that used in deriving the so-called Hu-Washizu principle in solid 
mechanics. See, for instance, Reference 32. 
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obtain: 

It can easily be verified that the variational statement,* 

6R + 6N = 0 

with 6N as in equation (13), leads to: (i) incompressibility equation (1) and momentum 
balance equation (2), (ii) compatibility, aB/aak, = V,,, (iii) traction b.c., equation (7), and 
(iv) velocity b.c., equation (8). 

Now, we consider a discretization of the flow domain into 'finite elements' V,, rn = 
1, 2, .  . . , N. Let the boundary of V,,, be denoted by aV,. It is seen that, in general, 
aV, = pm + S , ,  +S,,, where pm is the interelement boundary, and S,, and S,, are those 
parts of aV, where tractions and velocities, respectively, are prescribed. It is also seen that 
for those elements whose boundaries do not coincide with the external boundaries of the 
flow domain, one has, in general, that aV, = p,. In the finite element model, the field 
equations of (i) incompressibility and momentum balance, equations (1) and (2); (ii) 
compatibility, equation (3); (iii) the constitutive law, equation (17); and (iv) the boundary 
conditions equations (7), (8) should be satisfied for each element V,. These will be referred 
to as the intraelement constraints. In addition, the interelement constraint conditions, (i) 
velocity compatibility, u: = u; at p ,  and (ii) the traction reciprocity condition (a,,n,)'+ 
(a,,n,)-=O at p,, where (+) and (-) arbitrarily denote the two sides of p,, should be 
satisfied. Thus, in a finite element method based on equations (20), (19) and (13), one may 
choose v,, and p such that both the interelement velocity compatibility and traction 
reciprocity are satisfied a priori and allow the intraelement constraints to be satisfied a 
posteriori through the variational statement, equation (20). This can be done, for instance, by 
choosing each of the three fields, u,, a;,, and p to be C" continuous over each element in 
terms of their respective nodal values. Thus, in the final finite element system of equations? 
the nodal values of u,, a:, and p would remain as unknowns. This approach would be 
analogous to that in solid mechanics as typified, for instance, by the work of Olson33 and 
W ~ n d e r l i c h . ~ ~  However, as demonstrated for instance in Reference 35, in the case of the 
Hellinger-Reissner principle of solid mechanics, which is formally analogous to the present 
equation (20), if in the finite-element counterpart of equation (20) (wherein all the integrals 
are simply replaced by the sum of the respective integrals over each of the elements) the 
velocity field is interelement compatible a priori, the traction reciprocity is satisfied a 
posteriori through the resulting finite-element variational principle. In this case, the stress 
field a:, and p can be arbitrary in each element, i.e. they are neither subject to intraelement 
nor interelement constraints. Here we consider only a C" continuous velocity field and 
further assume, without loss of generality that the velocity field also satisfies, a priori, the 
velocity condition at S,,, equation (8), and assume arbitrary a:,, p fields which are not 
subject to either intraelement or interelement constraints a priori. Then, the finite element 
counterpart of equation (20) can be stated as: 

(20) 

* It is seen that this variational statement is formally analogous to the well-known Hellinger-Reissner principle of 
solid mechanics.32 
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where 

and 

Then it can easily be verified that for all admissible (Co continuous) 6v, and arbitrary 6a:, 
and 6 p ,  equation (21) leads to the Euler-Lagrange equations (1)-(3), (7) and the interele- 
ment traction reciprocity condition. Further, since a:, is arbitrary (in the sense of not being 
subject a priori to either intraelement or to interelement constraints) in each element the 
unknown parameters in a:, can be solved for at the element level and expressed in terms of 
the nodal velocities, from the algebraic equations resulting from the stationary condition 
6(FR)  + S(FN) = 0 for all 6afr. Thus, the final finite element equations would involve only the 
nodal values of n and p as unknowns. However, this approach would then become analogous 
to the standard ‘primitive variable’ ‘velocity-pressure’ mixed method. This situation is 
analogous to that in solid mechanics. For in solid mechanics, in connection with mixed 
methods based on Hellinger-Reissner principle, the so-called ‘limitation principle’ has been 
established by Fraeijs de V e ~ b e k e , ~ ~  which states that, if no constraints are imposed on the 
assumed stress distribution and the stress parameters are eliminated at the element level, the 
Hellinger-Reissner principle will yield the same stiffness matrix as that by the assumed 
displacement method. Thus, in solid mechanics, in a mixed method based on assumed 
stresses which are eliminated at the element level, it is generally necessary to impose 
constraints on the chosen stresses in order to yield a discrete formulation that is different 
from that based on assumed displacements. In linear solid mechanics, if in the Hellinger- 
Reissner principle the stress field is subject a priori to the intraelement momentum balance 
constraint, but not the interelement traction reciprocity condition (which still makes it 
possible to eliminate the stresses at the element level), one obtains the so-called hybrid-stress 
f o r m u l a t i ~ n ~ ~ * ~ ~  which is known to possess several advantages37 over the standard displace- 
ment method. Likewise, in the case of slow-creeping motion of a fluid (‘Stokes flow’), the 
deviatoric stress field a;, and p may be subject to the intraelement moment balance 
condition (a:,,, - P , ~  + @, = 0) a priori, but not to the interelement traction reciprocity 
condition, and obtain a so-called hybrid formulation as shown by one of the As 
demonstrated in References 28 and 29, in the hybrid method for Stokes flow, the final finite 
element equations would involve only the constant term in the pressure field in each element 
as an unknown in addition to nodal velocities. Now we turn to the present case of 
Navier-Stokes equations wherein the momentum balance condition in terms of a:, and p 
involves the non-linear acceleration term in terms of v, as in equation (2a). Owing to this 
assumption of a stress field (ci,, p) to satisfy the momentum balance condition, equation (2a), 
a priori is a difficult, if not an impossible task. Consider the analogous problem in solid 
mechanics-for instance, that of non-linear (large deformation) elastodynamics. Here, owing 
to the Lagrangian description of motion, the inertia term is linear; the non-linearity is due to 
large deformation. The momentum balance condition, for instance, in terms of the 2nd 
Piola-Kirchhoff stress tensor is n ~ n - l i n e a r ~ ~  in the sense that it involves coupling between 
the dependent variables, stress and displacement. Even for elasto-static large deformation 
problems, the momentum balance condition in its rate form (governing the stress-rate at 
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time t) is of the type.38 

s t , , ,  = -[(Tki%.k),{ +&El 
where S,, is the rate of 2nd Piola-Kirchhoff stress, ul is the rate of deformation, T,! are initial 
stresses, and ( ),, denotes the differentiation w.r.t Cartesian co-ordinates in the solid body in 
its configuration at time t. Mixed variational principles for the rate problem, involving S,, and 
zit can be der i~ed.’~,~’  However, in their application, if St, is completely unconstrained and 
the parameters in are solved for at the element level, in terms of the element-nodal values 
of u,, the resulting finite element method becomes equivalent to the standard displacement- 
rate based method, in view of the earlier stated ‘limitation principle’ of Fraeijs de Veu- 
beke.’6 Several ways of implementing a mixed method that is not subject to a limitation 
principle, by constraining S,, either to satisfy the ‘full’ momentum balance condition as above 
or to satisfy only the homogeneous part (i.e. S,,,, =O),  have been discussed in References 
38-40. Several applications have been made of one of these types of mixed methods, 
wherein S,, is constrained to satisfy only the homogeneous part of the momentum balance 
conditions, to large displacement, large rotation problems; see, for instance, References 
40-43, wherein the thus obtained numerical results have been shown to be superior as 
compared with those based on standard displacement methods using similar spatial discritiza- 
tion. Apart from the validity of this type of mixed method as borne out by the several 
numerical results in References 41-43, a theoretical justification has also been provided by 
one of the authors.44 Turning to the present application to Navier-Stokes equations, in order 
to generate a mixed method that is not subject to the ‘limitation principle’ of Fraeijs de 
V e ~ b e k e , ~ ~  we constrain the stress field aEl so as to satisfy only the ‘homogeneous’ part of 
the momentum balance condition, namely 

u,,,, + pF, = o = c:,,, - p,, + p E  = 0 in V, (24) 

It is seen that the above type of ‘homogeneous’ constraint on fluid stresses a,, (sans inertial 
terms) is entirely analogous, conceptually, to the homogeneous constraint imposed on stress 
rates S,, in solid mechanics, as elaborated above. Thus, the justification for constraining a,, a 
priori as in equation (24) is entirely analogous to that in non-linear solid mechanics and will 
be indicated later in this paper in the context of the developed mixed finite element method 
for the full Navier-Stokes’ equations. Now, in view of the constraint, equation (24), we 
reduce equation (22) to: 

Thus, the present mixed finite element method follows from the variational statement, 

6FM + SFN = 0 (26) 

with (FM)  as in equation (25) and S ( F N )  as in equation (23). 
In order to understand the justification of the present mixed method based on the 

constraint equation (24), it is instructive to study the meaning of the discrete equations that 
one obtains from equation (25). We first note that: 

n j ( ~ ~ i - 6 p 6 i j ) ~ i  dS- Tiit+ dS+jvm p ~ + t 4 , i v , ]  6vi dV} (27) 
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Since 6aij,i = 0, we may write equation (27) as: 

Now, assuming, without loss of generality, that 
constraint equation (24) be chosen as: 

= 0, let the stress field that satisfies the 

where 
constraint equation (24), in general, implies that 

and A, are functions of x,, and Pn and a, are undetermined coefficients. The 

A,cr,=DnPn ( n = 1  . . .  No;  m = 2  . . .  N,), (30b)” 

whereas a1 remains undetermined in each element. Note also that not all the No parameters 
need, in general, to enter the representation for p. 

Finally, let the velocity field that is C” continuous over each element be such that: 

Ilk = Bkrqr ( r  = 1, . . . , Nq) (31) 

In the above, Np is the number of undetermined parameters in a& a1 is the undetermined 
‘constant’ term in p in each element, and N, is the number of nodal velocity degrees of 
freedom. 

equation (28) as: 
The discrete form of equations can now be written by using equations (29)-(31) in 

-Bir,iqr(aa1+Dn S P n ) ]  d~ 

Since the parameters pi  and al are arbitrary for each element (in the sense of being not 
subject a priori to any interelement constraint), the first two terms can be seen to lead to the 
discretized physical law that the strains corresponding to the assumed stresses are equal to 
the assumed velocity strains and that the assumed velocity field obeys the incompressibility 
constraint, both in an integral average sense. 

In order to understand the physical implication of the last two terms in equation (32) we 
first note that qk are subject to nodal connectivity; and that B,, have only a local support in 
the usual finite element sense. Thus, consider a ‘patch’ with several elements meeting at a 
node. Thus a virtual velocity at this node affects only the surrounding elements. Consider a 
virtual velocity 6qk at this node. Let the number of elements in the ‘patch’ surrounding this 

* This relation is given explicitly for some specific element formulations in the Appendix I. 
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node be N,. Thus equation (32) implies that: 

e = 1  

(33) 
Thus, for the above patch, owing to an arbitrary virtual velocity at the ‘centre node’ of the 
patch, equation (33) implies the balance, in an integral average sense over the patch, 
between: (i) the rate of work of unequilibrated tractions at the interelement boundaries 
within the patch; (ii) rate of work of external tractions on the patch, and (iii) the rate of work 
of the convective acceleration forces. 

Recall that in the present formulation, aij and p are only constrained within each element 
to satisfy the ‘homogeneous’ momentum balance condition (sans inertial terms) a priori but 
not the interelement traction reciprocity condition. Thus, even though aii and p are subject 
to the intraelement constraint condition of equation (24), it is the work of the unequilibrated 
tractions that produces the convective acceleration, as evident from equation (33). Thus, 
equation (33) is the physical justification for the present mixed method based on the 
constraint equation (24). This is entirely analogous to the case of non-linear solid 
mechanics4 discussed earlier. 

Comparisons of the discrete (finite element) equations that arise out of the present mixed 
method, i.e. equations (32) and (33), with those that would arise from the standard 
velocity-pressure formulation are given in Appendix 11, which is intended to further clarify 
the present 

We now 
method. In 

method and its distinction from the standard velocity-pressure formulation. 
proceed with constructing the finite element equations for the present mixed 
doing so, we write ( F M )  of equation (25), using equations (29)-(31), as: 

1 
ete V, 4~ 

FM = { 5 -- a~jna:j,~n~, d V  
e = l  

Thus, the meanings of H,,, Gnr, Sr, and Q, are apparent from equation (34). Since are 
independent for each element, and (6FN) of equation (23) is independent of @A, equation 
(26) leads to an element-level equation, 

SPm = 0 + HnmPn = G m 8 r  
W M )  S(FM) = - 

a P m  (354  

Pn = HiAGrnrqr in Ve (35b) 

We note here that equation (35b) expresses the element stress parameters 0, in terms of the 
element nodal velocities that are yet to be solved for. 

i.e. 

Using equation (35) we write 

= C ($krsqrqs - alsrqr - Qrqr) 
e 

t 36) 
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(37) 
where 

Likewise, 

Thus, S ( E M ) + 6 ( F N ) = O  leads to: 

Equation (39) leads to the global finite element system of equations, 

where K,inear is the linear term independent of q* and son". arises from the convective 
acceleration and depends on q". Note that the dimension of the vector (Y is equal to the 
number of elements (say N), and if the number of nodal velocities is M, then S" is an 
( M  x N) matrix. 

It is worthwhile to point out that the element nodal velocities (a subset of the global vector 
q*) are solved from the full non-linear equations including convection terms as in equation 
(40). Thus the element stresses as solved from equation (35b) would reflect the influence of 
fluid acceleration. 

Before proceeding with a discussion of certain fundamental concepts of stability of the 
above numerical scheme, and the techniques employed presently to solve the non-linear 
system of equations (40), we briefly remark on some salient features of the present approach. 

Remark 1 

For a given finite-element mesh, the system of equations (40a,b) is larger than that arises in 
the currently popularized reduced-integration-penalty methods9-" only by the number of 
elements in the mesh, N. 

Remark 2 

In the present formulation, the hydrostatic pressure field in each element can be an 
arbitrary polynomial. However, it is only the constant term of this polynomial that becomes a 
solution variable in the finite element system of equations. Thus, in contrast to the 
velocity-pressure  formulation^,'-^ wherein all the nodal pressures are global unknowns, in 
the present method only the 'constant' term of the pressure field in each element is a global 
unknown. Thus, the present system of equations will, in general, be smaller than that in 
References 1-5. 

Remark 3 

We have labelled the present method also as a mixed method. However, the present 
method involves the assumption of the deviatoric stress field, the pressure field, and the 
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velocity field in each element. The earlier 'primitive-variable' finite element schemes based 
on velocity-pressure formulations have also been called mixed methods. In this earlier 
category of mixed methods, pressure acts as a direct Lagrange multiplier to enforce the 
incompressibility constraint. It is to this second category of mixed methods (based on 
velocity-pressure) that the so-called 'equivalence theorem' has been argued22 to be applica- 
ble. This equivalence theorem suggests that to each mixed finite element of the above second 
category, with continuous velocities and discontinuous pressure fields, there corresponds an 
element and a reduced-integration scheme in the penalty function formulation.22 However, 
the present mixed method is not in general 'equivalent' to any reduced-integration-penalty 
method. 

Remark 4 

No reduced or selective-reduced numerical integrations are employed in the present 
method. All integrations are performed with necessary order quadrature rules. Although this 
. may not be an advantage over selective-reduced integration schemes, it does eliminate the 
degree of arbitrariness and numerical experimentation associated with the later schemes. 

Remark 5 

In the present method, no 'upwinding' techniques are used; the convective acceleration term 

We now comment on certain aspects of stability of the present scheme and the techniques 
is treated via the standard Galerkin technique. 

employed presently in solving the non-linear system of equations (40). 

STABILITY OF THE NUMERICAL SCHEME 

Here we do not embark on a detailed discussion of the LBB conditions governing this type 
of mixed method; however, for the associated linear problems, the two LBB conditions that 
govern the stability and convergence of the scheme have been proved29 to be: 

N r  

SUP k = l  .lackk 23 Y * IIPC IIP VPC p (42) 
V E  vh I\v\l(HA'2(f))" 

If equations (41) and (42) are met, then the finite element problem has a unique solution. 
However, if P* and y* do not depend on the mesh parameter h then convergence can be 
established. A detailed discussion of the satisfaction of the above conditions for 2- 
dimensional elements, which are used in the present work, has been presented in Reference 
29. Here we restrict ourselves to present certain new ideas that have been generated since 
Reference 29 was written towards choosing crii and p' in each element such that satisfaction 
of equation (41) is assured a priori. 

We first note the form of the linear 'stiffness' of each element, given in equation (37), to 
be: 

k = GTH-'G (43) 
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where, 

and 

JV, 

l f  

(44) 

In equation ( 4 3 ,  p* = p - a I .  
As mentioned earlier, the number of undetermined parameters in a:, (and hence in the 

non-constant part of p, i.e. p*) is N,; the number of generalized nodal velocities is N,; and 
the number of rigid body modes for each element is N, (i.e. N, = 3 for planar elements, and 6 
for 3-D elements). It is then noted that: 

(i) From equation (44) it is seen that since B(a,,) = (1/4p)o:,o:, is positive definite for all 
chosen a:,, the H matrix is always positive definite and has the rank N,. 

(ii) Even though equation (43) appears to indicate the need for inverting H explicitly, in 
reality, since H-’G appears in equation (43), this term can be evaluated directly from 
equation (35a) by an equation solver with multiple ‘right-hand sides’. This is in fact 
much less expensive than explicitly finding H-’ . 

(iii) A ‘good’ linear ‘stiffness’ matrix for the element should involve all the rigid body 
modes of the element. Thus the rank of the element k should be N, - Nr. 

(iv) The matrix G is of order (N, X N,). From equation (45) it is seen that since V,, = q,,,) 
is zero for N, rigid modes, the rank of G is, at best, the minimum of (N@; N, - N r ) .  

(v) In view of (iv) it is seen that the rank of k of equation (43), is, at best, the minimum of 
(N, ; N, - N,). Thus, in view of the requirement (iii), it is seen that one must have the 
criterion, N p  2 N, - N,. For simplicity, one may choose N, = N, - Nr. 

(vi) The central problem becomes one of assuring by a careful choice of a,, in V,, for a 
given u,, that the rank of G is N, -N,. 

Since V,, in equation (45) involves only (N, -N,) parameters, in order to assure the rank 
of G to be N, - N,, we must choose Np( 2 N, - N,) equilibrated stress modes of (a:, - p* S,,) 
in each element such that 

( d 1 - p ”  S l ] > V I J  dV>O; Vq#O (46) Le 
for each of the components of (a:, -p* S,,). This condition is seen to be necessary for the 
satisfaction of equation (41). 

Even though several elements were developed to satisfy the above rank conditions, some 
of which are illustrated in Appendix I, we discuss here the simplest element and the one used 
to generate the solutions reported in Part I1 of this paper-the ‘four noded’ isoparametric 
element. The degenerate case of this element, namely the square, is first treated. 

It has been shown3’ that concepts of group theory are helpful-and essential-in choosing 
a,, to satisfy the rank condition and equation (46). For the purposes of our present discussion 
we wish not to repeat these group theoretical arguments31 but indicate only the essential 
ideas. 

The most direct attack on the above ‘rank problem’ (also, physically, the problem of 
‘mechanism  mode^'^' is to choose as a stress interpolation any complete equilibrated 
polynomial field having at least as many degrees of freedom as the V,,, to form the G matrix, 
and then to compute the rank of G by a procedure such as Gaussian elimination. If the rank 
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proves too small, the next highest order stresses must be added to the interpolation. When 
the rank of G equals (Nq - Nr), this elimination process should reveal which stress degrees of 
freedom are redundant. In practice, especially for 3-dimensional elements, this straightfor- 
ward method is cumbersome since the matrix G will be both large and relatively dense. 
Moreover, it is a non-trivial matter to eliminate redundant stresses, while at the same time 
preserving the invariance of the stress-interpolants. 

The requirement of this invariance alone suggests the relevance of group representation 
theory (see for instance Reference 45) to this problem. In the present discussion we illustrate 
the use of such a theory and show that it leads to a sparse, quasidiagonal G matrix from 
which we can easily determine the rank of G .  

Consider a square element with Cartesian coordinates (x, y) located at the centroid. The 
symmetry group G of the square, consisting of rotations and reflections, has the following 
representation :4s 

1 0  0 1  0 - 1  

-1 0 0 1  0 - 1  

c1: [o 11; c2: [-' 0 -1 "1; c3: [ -1 0 1, 0] 

c4: -3 [ 0 11; cs: [I 0 1 9  [-1 0 1  (47) 

Class C, transforms (x, y) onto itself, C2 transforms (x, y) to (-x, -y), etc. As shown by 
Burnside4' the above group has 5 irreducible representations, which we label here as rl, 
r2,. . . , rs. 

For a 4-noded square, the velocity representation is: 
v = ( L  x, Y, XY)X+(l, x, y, XY)Y (48) 

In equation (48) the simple dyadic notation has been used: X, Y denote the direction of base 
vectors and x, etc. represent the polynomial components. The velocity strains corresponding 
to equation (48) are: 

V=(O, 1 ,0 ,  y)XX+(O,O, 1, x)YY+(O, 1,x,  y)XY (49) 

Using the group theoretical concepts4' as illustrated in detail in Reference 31, we obtain the 
strain decomposition into irreducible subspaces, r, . . . rs, respectively, as follows: 

The strains V in equation (50) may be viewed as 'natural strains'. 

rated deviatoric stress of linear variation in x, y can be assumed as: 
We consider only a constant pressure ( p  = a*) in each element. Thus p* = 0. The equilib- 

u'=[a, +a2x+a3y]xx+[a4+asx+a6y]YY+[a7-a6x-a2y]xY (51) 

The irreducible representation of the above stress field (or the 'natural stress' modes) is: 
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In equation (52) it implies that o:') and ak2) are two linearly independent bases in the 
irreducible representation rs. 

The advantage of representing V and u' through irreducible representations as in equa- 
tions (50) and (52), respectively, is now apparent. We now compute the term 

using the representation of equations (50) and (52). The matrix G can easily be found to be 
(for a square element -1 x, y s t-1): 

v1 v2 v3 vs 

Thus, in terms of the natural strain and stress decompositions, the G matrix becomes 
quasi-diagonal in nature. From an observation of G in equation (54), in order to maintain 
the rank of G to be 5 [N, = 8, N, = 3, N, -N, = 51, it is necessary to include at least 5 
(NB = 5, Np = N, -Nr) stress-modes, a,, a2, u3, and (ay) or This 5 parameter stress 
field would be of least order, yet stable and invariant. However, a 7 parameter stress field 
containing both 05" and ai2) which will lead to complete (up linear terms) in all the stresses 
aii, which is still stable and invariant, has been chosen in the present. 

The above development, namely assurance of rank G ,  had been for a square element. For 
an isoparametric element, namely 

x = x ( t , r i > ;  y=y( t ,17) ;  - l s ( t ,ds+l  (55)  
the stress field a', in Cartesian co-ordinates, which satisfies equilibrium (in global co- 
ordinates, of course) would still be chosen as in equation (51) The velocity field can be 
chosen in isoparametric co-ordinates as, 

v = v(t, 77) (56) 

such that it is C o  continuous. Of course, for a 4 noded element, u(4, q) is bilinear in (5, q). It 
has been verified that the rank of G will still be 5 for even the most severely distorted 
elements when a' and v are chosen as in equations (51) and (56), respectively, (of course, the 
evaluation of G from equation (53) now involves the usual Jacobian of isoparametric 
geometric mapping). 

Even though the above 4-node element is the simplest to develop, and the one which is 
exclusively used to obtain the results presented in Part I1 of this paper, higher-order 2 and 3 
dimensional elements which are stable can be (and have been) developed using the basic 
concepts presented above. Some of these elements are illutrated in Appendix I. 

SOME DETAILS OF NUMERICAL SOLUTION OF EQUATION (40) 

We first discuss the numerical aspects of solutions of steady-flow equations, namely equa- 
tions (40a) and (40b) wherein the time-dependent term is omitted. For convenience, we 
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rewrite these steady-state equations as: 

F(q) = K(q)q - f = 0 (57) 
where q is the global nodal-velocity vector. 

In the present series of computations, reported in Part I1 of this paper, to solve the 
non-linear, unsymmetric system of equations (57) we have used the so-called quasi-Newton 
method, with the so-called ‘Broyden update’. The details of this algorithm are more or less 
analogous to those of Engelman, Strang, and Bathe.26 Although these details are not 
repeated here, they are fully documented in Reference 46. 

As for the numerical integration of the initial value problem for the unsteady flow as given 
in equations (40), we have used a one-step ‘linearly implicit’, predictor-corrector method as 
detailed for instance in Reference 9 among others. Other approaches such as the ‘fractional 
step’ method of Donea et at.* may also be used. 

Thus, although no radically different schemes are being proposed for solving either the 
non-linear algebraic equations for steady-flow or for integrating the initial value problem of 
unsteady-flow, the present computations reported in Part I1 basically illustrate: 

(i) the comparative merits of the spatial discretization using the present mixed ‘deviatoric 
stress-pressure-velocity’ formulations 

(ii) the present treatment of incompressibility in comparison to that by reduced- 
integration-penalty methods 

(iii) the use of the standard Galerkin scheme in conjunction with the present mixed 
formulation to treat the convection term, in contrast to the use of Petrov-Galerkin 
schemes and ‘upwind’ techniques 

(iv) the use of necessary order quadrature rules (and consistent masses for the unsteady 
flow) in contrast to the use of selective reduced integration and/or diagonal mass 
representations. 

CONCLUSIONS 

A new mixed, assumed ‘deviatoric stress-velocity-pressure’, conventional Galerkin method 
has been presented. Its versatility, efficiency, and the comparison of its performance with 
that of the other methods, are indicated in Part I1 of this paper wherein solutions to a 
number of 2-dimensional flow problems are presented. The natural extension of the present 
method to solve 3-dimensional incompressible convection dominated flows is currently under 
way and will be reported on shortly. 
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APPENDIX I: DETAILS OF SOME TWO-DIMENSIONAL 
ELEMENT FORMULATIONS 

We first consider the four-noded element. In summary, the element formulation calls for: 
(i) choice of a:, and p to satisfy the constraint (u;~,~- p , , )  = 0 (in the absence of prescribed 

body forces) in each element 
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(ii) choice of C" continuous velocity field. Within the four-noded element, we illustrate the 
details for two choices: (i) CPLSE4 element which has constant pressure, bilinear 
distribution of and bilinear velocity; (ii) CPQSE4 which has constant pressure, 
quadratic aii, and bilinear velocities. 

CPLSE4 element 
(a) Assumption of ali and p. We start by assuming 

P = a l  (5  8) 
4 1  = P I  + Pzx + P3Y + P 4 X Y  

(722 = P9 + PIOX + PllY + P 1 2 X Y  

(7;2 = @5+ @6x + P7Y + PSXY 

(59) 
The constraint equations of 'homogeneous' momentum balance conditions, equation (24), 
for the present 2-D case are: 

(b) Assumption of v 

VX =;(l-<)(l-q)qi + E)(l-q)qZ+;(l+ <)(I + rj)q3+;(1- <)(I+ q)q4 (64) 
and a similar expression for u, ; and the geometry of the quadrilateral is described by: 

x = $(I - t)(1- q)x, + t ( l +  <)(I- q)x2 ++(I + t)(1+ q)x3 +$(I - <)(I + q)x4 

CPQSE4 element 

(a) Assumption of a& p. Using procedures similar to above, we have: 

and the assumption of v is the same as in (64). 
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We now illustrate the formulation of an 8-noded quadrilateral element with quadratic 
pressure, quadratic deviatoric stresses, and quadratic velocities, herein designated as a 
QPQSE8. 

and alj as: 

ail  = Pl + P Z X  + P 3 Y  +P4xY + P S X 2 +  P 6 Y 2  

a I z =  P 7 + P 8 X + P S Y  +P,OXY + P 1 , ( X 2 + Y 2 )  

P13tP14X+P15Y+P4xY+P17X2+P18Y2 (70) 

Note that there are only 16 parameters in alj in (70); however, to avoid confusion, the 
numbering of the P parameters has been left as it was in (66). Equation (69) is an example of 
the explicit representation of the general equation (30b) in the text. Once the element 
parameters in afj are calculated from the element nodal velocities using equation (35b) 
and the constant term a1 in the pressure variation is computed from the global finite element 
equations equation (40a), the polynomial variation of pressure can be computed from 
equation (69). 

APPENDIX 11: COMPARISON OF THE PRESENT MIXED METHOD 
WITH THE STANDARD VELOCITY-PRESSURE FORMULATION 

To further clarify the present assumed ‘deviatoric stress-velocity-pressure’ mixed method, it 
is compared herein with the standard ‘velocity-pressure’ mixed method. Apart from the 
obvious differences in the variational bases for the two approaches, we discuss here 
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specifically the finite element equations that would arise for the standard 'velocity-pressure' 
formulation and compare them with those for the present method as given in equations (32) 
and (33). 

We will only consider the standard Galerkin method for the 'velocity-pressure' formula- 
tion, which has as its variational basis, equations (1 1)-(13) respectively. Now, equation (1 1) 
can be written (assuming that =0) as: 

Suppose that in each element, the velocity and pressure are approximated as: 

and 
q = B,,q, 

p = Aapa 

( I  = 1 . . . Nq) 

(a = 1 . . . N,) 

where u is C" continuous and is, in general, one Pegree higher polynomial than p. Thus, the 
finite element counterpart of (71) becomes: 

Since ui is C" continuous 8Vij = 8u(i,jl, upon using the divergence theorem, equation (73) 
becomes: 

+ n i (2~Vi j  - p aij) 60, ds - Ltm 8vi ds 6, 

It is seen that the first four terms of equation (74) lead to the weighted residual form of the 
finite element momentum balance equation and the last term to that of the incompressibility 
constraint. In order to understand the physical meaning of the first 4 terms of (74), we note 
once again that in this method u, are subject to nodal connectivity through qr, and B ,  of (72) 
on= again have only a local support. Thus, once again consider a 'patch' with several 
elements meeting at a node. A virtual velocity at this node affects only the surrounding 
elements. Let 6p, be the virtual velocity at this node. Let the elements in the patch be N,. 
Then the first four terms of (74) imply that: 

e = l  
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Note further that, if the deviatoric stresses computed from the assumed ui are labeled as 
(alj)*, we have: 

(dj>* =2~ .V, j  = P”Birn,j +Bjrn,ilqm (76) 
Note also that since the assumed velocities in the standard velocity pressure mixed formulation 
are simply C” continuous functions with no further constraints, it is seen that, in general, 

and 
[(v!,.)* - p Sij] , j  f O in V, 

[(a~i)*-pGii]nf+[(a~i)*-p 6,]n; # O  at av, 
Note, on the other hand, that in the present assumed ‘deviatoric stress-pressure-velocity’ 
mixed formulation the directly assumed aij and p are such that 

but 
[ ( + I j  - p 8ij],j = 0 in V, (784  

{Cali - p Si i ]q}+  +{[aij - p Gij]nj}- i: 0 at a V, (78b) 

Comparing finite element weighted residual equation (75) for the standard velocity-pressure 
formulation with the corresponding equation (33) for the present ‘deviatoric stress-velocity- 
pressure’ formulations, the distinctions between the two methods can be immediately noted. 
Firstly, both (75) and (33) are essentially similar, except that the counterpart of the first term 
of equation (75) (which is not zero owing to equation (77a)) vanishes in equation (33) owing 
to the a priori constraint (78a). From a weighted residual point of view, this is, if anything, 
not a shortcoming. In addition, the constraint (78a) of the present method enables all but the 
constant term in the pressure variation in each element to be expressed in terms of the 
undetermined parameters in the assumed alj. This is decidely an advantage compared to the 
standard velocity-pressure formulation wherein all the parameters pa of equation (72) in 
each element are retained as solution variables in the global finite element system of 
equations. Also, from equation (73 ,  it is seen that the linear viscous ‘stiffness’ matrix for the 
standard velocity pressure approach comes from the first two terms of equation (75). On the 
other hand, in the present approach, the linear viscous ‘stiffness’ matrix comes from only 
the first term of equation (33) when Pn are expressed in terms of q, as in equation (35b). 
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